
 1  
 

Evolution of the impact of oil prices on electricity, natural gas, and coal 

prices: causality and interaction 

1. Daniel João Florêncio Marcelo 

Under supervision of Prof. Dr. Luís Filipe Moreira Mendes and Prof. Dr. João José Esteves Santana 
1 Instituto Superior Técnico (IST), University of Lisbon, Lisbon 

 

Abstract 

We explored the impact of oil prices on the electricity, natural gas, and coal prices, with a focus on European markets. Using 

as models, the Vector Error Correction Model (VECM) and the Dynamic Conditional Correlation - Multivariate Generalized 

Autoregressive Conditionally Heteroskedastic Model (DCC-MGARCH), our results proved the intuition that crude oil prices 

do indeed have an impact on the prices of electricity, natural gas, and coal. While most of the literature has been focused on 

the relationship between oil and natural gas prices, our results showed that today a strong relationship also exists between oil 

and coal prices, especially for coal month-ahead futures contracts. Finally, we shed some light on the electricity markets in 

Iberia and found that Iberian electricity prices seem to be less affected by oil prices, in comparison to the French and German 

electricity prices. 
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Introduction 

We will explore the impact of oil prices on the electricity, 

natural gas, and coal prices, with a focus on European markets. 

We intend to quantify such impact and search for any 

variations across time. 

We will first select the time period that we intend to study. A 

period from 28/12/2011 to 25/09/2021, nearly an entire 

decade, provides us with enough data points to explore long 

term trends and is recent enough for our work to be novel and 

relevant for today’s actors such as traders and policy makers.  

Each data point in our time series will correspond to a weekly 

average of all the traded prices in the aforementioned period, 

and all data will be retrieved from the Refinitiv Eikon (former 

Thomson Reuters Eikon) database. 

Energy commodities are traded across several markets and 

using several benchmarks, so we will have to choose the 

appropriate benchmarks for each one of the commodities for 

our study.  

For oil we will use the Brent benchmark, as it is the most 

commonly used benchmark in the world. For natural gas we 

will use the data related to the TTF trading hub, one of the 

most liquid hubs in Europe, and for coal we will base 

ourselves on the API2 index, the most relevant index for coal 

in Europe.  

Regarding electricity prices, we decided to focus on Iberia 

(Portuguese and Spanish electricity prices are usually coupled 

and we find that studies focusing on this region are lacking, 

when comparing to other regions), and France and Germany 

(the two largest economies of the European Union and good 

representatives of countries with a low percentage of fossil 

fuels in their energy mix in the case of France, and the opposite 

in the case of Germany). Iberian electricity prices will come 

from OMIP (branch of MIBEL responsible futures contracts), 

and French and German electricity prices will come from EEX 

(European Energy Exchange). 

All prices, if the commodities are not already traded in Euros, 

will be converted to Euros. 

We will then proceed to study these time series’ stationarity 

so that we can finally study and interpret their VAR and 

VECM outputs, their IRF outputs, and their DCC-MGARCH 

outputs. For this study we will make use of the programming 

language R. 
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Methodology 

1. Stationarity tests 

1.1. Augmented Dickey-Fuller (ADF) test 

The stationarity test (aka: unit root test) proposed by Dickey 

and Fuller (1979), the Augmented Dickey-Fuller (ADF), 

accommodates some forms of serial correlation, being used 

for larger and more complicated set of time series models, 

especially when compared to the Dickey-Fuller test. The ADF 

is represented as follows: 

𝑦𝑡 = 𝑎 + 𝛾𝑡 + ∑ 𝛽𝑖𝑦𝑡−1
𝑝
𝑖=1 + 𝜀𝑡     (1) 

Nonetheless, if there is one-unit root, then the process is unit 

root non-stationary, resulting in the following representation: 

𝛥𝑦𝑡 = 𝜇 + 𝛾𝑡 + 𝑎𝑦𝑡−1 + ∑ 𝛽𝑖𝛥𝑦𝑡−𝑖
𝜌
𝑖=1 + 𝜀𝑡     (2) 

Still, each one of these two versions of the test has its own 

critical value, directly depending on the size of the sample. 

However, in both cases the null hypothesis refers to the 

existence of a unit root (𝛾 = 0) (Dickey and Fuller, 1979). 

1.2.    Phillips-Perron (PP) test 

Phillips and Perron (PP) proposed an alternative stationarity 

test as way to address the problem of serial correlation. 

Essentially, this test estimates the non-augmented Dickey-

Fuller (DF) test equation, modifying the t-ratio of the ɑ 

coefficient so that the serial correlation does not affect the 

asymptotic distribution of the test statistic. The PP test is 

represented as follows: 

�̃�ɑ = tɑ (y0 / 𝑓0
1/2 - 

𝑇(𝑓0−𝛾0)(𝑠ⅇ(�̃�))

2𝑓0
1∕2

𝑠
)     (3) 

Where �̃� refers to the estimate, 𝑡𝑎 to the t-ratio of 𝑎, if (�̃�) to 

the coefficient standard error, s to the standard error of the test 

regression, and 𝑓0 to the estimator of the residual spectrum at 

the zero frequency (Phillips and Perron, 1988). 

2. Models for multivariate relations 

When modelling the interrelationships between variables, 

notably oil, gas, electricity, and coal, one can choose among a 

variety of possible empirical estimation strategies. The time 

series may be studied independently as univariate time series, 

each characterized by its own mean and autocovariance 

function (Alberola et al., 2008; Oberndorfer, 2009). However, 

when choosing a univariate approach, one fails to take into 

account the possible dependence between the time series, 

which is often of great importance to understand the observed 

values of the time series and its dynamics and evolution 

through time. 

This is why here it was decided to estimate a vector of oil, 

natural gas, electricity and coal prices whose conditional 

covariance matrix evolves through time. First, we will present 

a VAR, then a VECM and, lastly, for complementary, a DDC-

MGARCH model. 

2.1.    Vector Autoregression (VAR) model 

The VAR model allows for simultaneous influence among the 

different variables and the existence of multiple linear 

independent cointegration vectors, the multivariate model is 

more general and allows for rich dynamics. 

The general representation of a VAR model consists of a set 

of 𝐾 endogenous variables 𝑧𝑡 = (𝑧𝑘𝑡
, … , 𝑧𝑘𝑡

) for 𝑘 = 1, … , 𝐾, 

i.e., these variables depend linearly on their 𝑘 previous values, 

as well as on the current value of the deterministic 

components: 

𝑧𝑡 = 𝜇 + ∑ 𝐴𝜏𝑧𝑡−𝜏
𝑘
𝜏=1 + 𝛾𝐷𝑡 + 𝜀𝑡   (4) 

where 𝑧𝑡 represents the vector of 𝑛 jointly determined 

(endogenous) variables, 𝜇 is a constant vector, the 𝐴𝜏 matrices 

contain the coefficients associated to each 𝑧𝑡−𝜏 vector, 𝐷𝑡  

represents the vector of deterministic variables (e.g. constant, 

trend, seasonal dummy variable, pulse, or shift dummy 

variable), and 𝛾 represents the vector of coefficient associated 

to each of the deterministic components. 𝜀𝑡 represents an 

unobservable error term, e.g., a random variable vector with 

normal distribution (Sims, 1980; Hamilton, 1994). 

In this model, all variables must have the same order of 

integration. If all variables are stationary, 𝐼(0), we have the 

standard case of a VAR model. If all variables are non-

stationary, 𝐼(𝑑), 𝑑 > 1, we have two choices. Either, and if 

the variables are not cointegrated, one differentiates the 

variables 𝑑 times in order to obtain a VAR, or, if the variables 

are cointegrated, one may use a VECM. 

2.2.    Vector Error Correction Model (VECM) 

Consider only the case where the variables 𝑧𝑡 are 𝐼(1), i.e., 

they must be differenced one time in order to achieve 

stationarity. Accordingly, the set of 𝐼(1) variables is 

cointegrated when there is a 𝐼(0) linear combination of them. 

The VECM form is used to explicitly describe the co-

integration relations between the variables, and it can be 

derived from the VAR: 

Δ𝑧𝑡 = 𝜇 + Π𝑧𝑡−1 ∑ Γ𝜏
𝑘−1
𝜏=1 Δ𝑧𝜏−𝑡 + 𝛾𝐷𝑡 + 𝜀𝑡    (5) 

where Δ is the difference operator (Δ𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1), and Γ𝜏 

is a coefficient matrix relating changes in 𝑧𝑡 for lagged 𝜏 

periods to current changes in 𝑧𝑡 (short-run parameters). The Π 
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matrix is called an error correction term, which compensates 

for the long-run information lost through differencing 

(Juselius, 2006). 

If the VAR process has unit roots, the Π matrix is singular. 

Then Π can be decomposed in two matrices, α and β, as Π =

αβ′, where 𝛼 represents the convergence speed of the different 

variables at equilibrium, also known as the loading matrix, and 

β represents the long-run relationship coefficient matrix, also 

known as cointegration space or co-integration matrix. (Note 

that the α and β matrices are not unique.) Rewriting equation 

(2), we get 

Δ𝑧𝑡 = 𝜇 + αβ′𝑧𝑡−1 ∑ Γ𝜏
𝑘−1
𝜏=1 Δ𝑧𝜏−𝑡 + 𝛾𝐷𝑡 + 𝜀𝑡 (6) 

Comparing (4) and (5) we get 

Π = αβ′ = −I + ∑ 𝐴𝜏
𝑘
𝜏=1      (7) 

and 

Γ𝜏 = − ∑ 𝐴𝜏
𝑘
𝑖=𝜏+1      (8) 

The matrices α and β have dimensions 𝑛 × 𝑟, where 𝑟 is the 

number of cointegration relations. There is cointegration in the 

case where 𝑟 ≤ (𝑛 − 1). 

2.3.    Criteria to choose the number of lags (Akaike, 

Hannan-Quinn and Schwarz) 

If 𝐿𝑛(𝑘) is the likelihood of a model with 𝑘 parameters based 

on a sample of size 𝑛, and let 𝑘0 be the correct number of 

parameters. Suppose that for 𝑘 > 𝑘0 the model with 𝑘 

parameters is nested in the model with 𝑘0 parameters, so that 

𝐿𝑛(𝑘0) is obtained by setting 𝑘 − 𝑘0 parameters in the larger 

model to constants. The Akaike (AIC), Hannan-Quinn (HQ), 

and Schwarz (SC) information criteria for selecting the 

number of parameters are, respectively: 

AIC: 𝑐𝑛(𝑘) = −2. 𝑙𝑛(𝐿𝑛(𝑘))/𝑛 + 2𝑘/𝑛     (9) 

HQ: 𝑐𝑛(𝑘) = −2. 𝑙𝑛(𝐿𝑛(𝑘))/𝑛 + 2𝑘. 𝑙𝑛(𝑙𝑛(𝑛))/𝑛     (10) 

SC: 𝑐𝑛(𝑘) = −2. 𝑙𝑛(𝐿𝑛(𝑘))/𝑛 + 𝑘. 𝑙𝑛(𝑛)/𝑛     (11) 

i.e., 𝑘0 can be estimated by 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑐𝑛(𝑘)     (12) 

For the specific case of a Gaussian VAR(𝑝) model, 

𝑌𝑡 = 𝑎0 + ∑ 𝐴𝑗
𝑝
𝑗=1 𝑌𝑡−𝑗 + 𝑈𝑡, 𝑈𝑡~𝑖. 𝑖. 𝑑. 𝑁𝑚[0, Σ]     (13) 

where 𝑌𝑡 ∈ ℝ𝑚 is observed for the 𝑡 = 1 − 𝑝, … , 𝑛, then 𝑘 =

𝑚 + 𝑚2. 𝑝 and 

𝑙𝑛(𝐿𝑛(𝑘)) = −
1

2
𝑛. 𝑚 −

1

2
𝑛. 𝑙𝑛[𝑑𝑒𝑡(Σ̂𝑝)]     (14) 

where Σ̂𝑝 is the maximum likelihood estimator of the error 

variance Σ. Then we may use these criteria to determine the 

order 𝑝 of the VAR: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑐𝑛
𝑉𝐴𝑅(𝑝)     (15) 

where 

AIC: 𝑐𝑛
𝑉𝐴𝑅(𝑝) = 𝑙𝑛 (𝑑𝑒𝑡(Σ̂𝑝)) + 2(𝑚 + 𝑚2. 𝑝)/𝑛     (16) 

HQ: 𝑐𝑛
𝑉𝐴𝑅(𝑝) = 𝑙𝑛 (𝑑𝑒𝑡(Σ̂𝑝)) + 2(𝑚 + 𝑚2. 𝑝)𝑙𝑛(𝑙𝑛(𝑛))/𝑛 

(17) 

SC: 𝑐𝑛
𝑉𝐴𝑅(𝑝) = 𝑙𝑛 (𝑑𝑒𝑡(Σ̂𝑝)) + 2(𝑚 + 𝑚2. 𝑝)𝑙𝑛(𝑛)/𝑛    (18) 

2.4.    Trace test 

The most usual cointegration test, according to Harris and 

Sollis (2003), is the Johansen trace test (Johansen, 1991), 

given by: 

𝜆𝑡𝑟𝑎𝑐ⅇ = −𝑇 ∑ 𝐿𝑛(1 − 𝜆𝑖)
𝑛
𝑖=𝑟+1 , 𝑟 = 1, … , 𝑛 − 1     (19) 

It consists of estimating the eigenvalues (𝜆) associated with 

each hypothesis for the cointegration vectors, i.e. 𝑟 =

0, . . . , 𝑟 = 𝑛 − 1. In order to prove cointegration, it is 

necessary to prove that there is at least one 𝜆𝑖, with 𝑖 =

1, . . . , 𝑛 − 1, that is significantly non-zero. That is, the null 

hypothesis is 

𝐻0: 𝜆𝑖 = 0, with 𝑖 = 𝑟 + 1, . . . , 𝑛    (20) 

The test is sequential, beginning for the hypothesis of the trace 

test being zero and increasing 𝑟 whenever it is rejected, i.e., 

𝑟 = 0 versus 𝑟 > 0, then 𝑟 = 1 versus 𝑟 > 1 etc. If one of the 

tests does not reject the null hypothesis, the test stops, and one 

can conclude that there are as many cointegration vectors as 

the number of rejections of the null hypothesis that occurred 

in the test. 

3. Jarque-Bera (JB) normality test  

The Jarque-Bera (JB) normality test estimates that if both the 

skewness and the kurtosis of the data are different from the 

theoretical normal distribution, being represented as it 

follows: 

JB = 
𝑛

6
 (𝑆2 +

1

4
(𝑘 − 3)2)     (21) 

Where the S refers to the sample skewness, the n to the sample 

size, and the 𝑘 to the sample kurtosis. Overall, if the observed 

value is bigger than the critical value, the null hypothesis from 
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which the sample is drawn, namely from a normally 

distributed population, can actually be rejected. Nevertheless, 

considering that the JB test assesses if the sample is close to 

the normal distribution by the datasets skewness and kurtosis. 

One of its main weaknesses relate to the fact that it can break 

down if the dataset has outliers, not being very useful in such 

cases (Jarque and Bera, 1980, 1987; Öztunan et al., 2006). 

4. Granger test for causality 

Granger (1969) causality helps to identify interdependence 

relations among variables, thus being useful in determining 

the benefits of including certain variables in the model. That 

is, if some past values of a variable have explanatory power of 

current ones. 

In the framework of a bivariate VAR process, a variable 𝑧2 is 

said to be Granger-causal for another 𝑧1, if at least one 𝛼12,𝜏 

in 

[
𝑧1,𝑡

𝑧2,𝑡
] = ∑ [

𝛼11,𝜏 𝛼12,𝜏

𝛼21,𝜏 𝛼22,𝜏
] [

𝑧1,𝑡−𝜏

𝑧2,𝑡−𝜏
] + 𝛾𝐷𝑡 + 𝜀𝑡

𝑝
𝜏=1      (22) 

is non zero, where 𝜏 = 1, … , 𝑝. 

Likewise, for a bivariate VECM process, 𝑧2  is said to 

Granger-cause 𝑧1 if both 𝛼1𝛽2 and at least one 𝛾12,𝜏 in 

[
Δ𝑧1,𝑡

Δ𝑧2,𝑡
] = [

𝛼1𝛽1 𝛼1𝛽2

𝛼2𝛽1 𝛼2𝛽2
] + ∑ [

𝛾11,𝜏 𝛾12,𝜏

𝛾21,𝜏 𝛾22,𝜏
] [

Δ𝑧1,𝑡−𝜏

Δ𝑧2,𝑡−𝜏
] +

𝑝−1
𝜏=1

𝛾𝐷𝑡 + 𝜀𝑡     (23) 

are non zero, where 𝜏 = 1, … , 𝑝 − 1. 

5. MGARCH and the specific case of DCC-

MGARCH 

Consider 𝑘 time series of return innovations {𝑋𝑖,𝑡 , 𝑖 =

1, . . . , 𝑘}. Stacking these innovations into a vector 𝑿𝑡, we 

define 𝜎𝑖𝑖,𝑡 = 𝑣𝑎𝑟(𝑋𝑖,𝑡|𝜁𝑡−1) and 𝜎𝑖𝑗,𝑡 = 𝑐𝑜𝑣(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡|𝜁𝑡−1). 

We note that ∑ 𝜎𝑖𝑗,𝑡𝑡  is the conditional variance-covariance 

matrix of all the time-series. 

The main difficulty encountered with MGARCH modelling 

lies in finding a suitable system that describes the dynamics of 

Σ𝑡 parsimoniously. Besides, the multiple GARCH equation 

needs to satisfy the positive definiteness of Σ𝑡, which is a 

numerically difficult problem. Finally, the number of 

parameters to be estimated increases very rapidly as the 

dimension of the time-series increases, which can take a very 

long time during the numerical implementation. To address 

these questions, we detail below three parametric formulations 

for the structure of the conditional covariance matrices. 

Chevallier (2011) has studied the relationship between energy 

and emissions markets using VAR and a few variants of the 

GARCH models, from which the Dynamic Conditional 

Correlation MGARCH approach showed the most satisfactory 

fit to the properties of these types of data and analysis. Hence, 

in this paper we will also estimate a DCC MGARCH model. 

The DCC MGARCH model attempts at making the 

conditional correlation time-varying, which is considered a 

preferable approach to deal with the possibly overly restrictive 

assumption of constant conditional correlations (Engle, 2002). 

Hence, we introduce the following dynamic matrix process: 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑆 + 𝑎𝜖1𝜖′𝑡−1 + 𝑏𝑄𝑡−1     (24) 

with 𝑎 and 𝑏, respectively, are positive and non-negative 

scalar parameters such that 𝑎 + 𝑏 < 1, 𝑆 the unconditional 

correlation matrix of the standardized errors 𝜖𝑡, and 𝑄0 is 

positive definite. To produce valid correlation matrices, 𝑄𝑡 

needs to be re-scaled as follows: 

𝑃𝑡 = (𝐼 ⊙ 𝑄𝑡)−1 2⁄ 𝑄𝑡(𝐼 ⊙ 𝑄𝑡)−1 2⁄      (25) 

Having detailed the VAR, VECM and DCC MGARCH 

models and the testing tools on which our empirical study is 

based, we now present the results and respective interpretation 

in the next section. 

Results and analysis 

In this section we will apply the methods of the previous 

section to the study of the impact of oil prices on electricity, 

natural gas, and coal prices. 

Before we proceed, we must first select our data. As 

mentioned in previous sections, the focus of this work is on 

Western Europe, in particular, Iberia, France, and Germany.  

Therefore, in terms of electricity prices, our time series will 

use data from OMIP electricity futures contracts (for the 

Iberian market), EEX French electricity futures contracts (for 

the French market), and EEX German electricity futures 

contracts (for the German market). 

For natural gas prices, we base ourselves on TTF natural gas 

futures contracts, and for coal we will base ourselves on coal 

futures contracts indexed to API 2. 

We chose to work with futures contracts instead of spot prices 

as we believe that spot prices are more sensible to other short 

term external and exogenous factors that can influence supply 

and demand, such as extreme weather spikes, unexpected 

pluviosity, amongst others. 
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However, our oil prices will correspond to Brent spot prices, 

because here we want to see higher volatility, and our interest 

is to see how long term agents in commodities markets 

interpret sudden events in oil prices. 

To explore more nuances, we will also divide this section in 

two parts. In the first, we will study the impact of Brent spot 

prices on Year-ahead contracts relating to the other 

commodities. In the second part, we will then repeat the same 

study for Brent spot prices influencing Month-ahead 

contracts. 

Also, we should take notice, we named our time series 

according to the following code, relating to a correspondent 

commodity: 

• Brent: Brent crude oil spot prices, in €/bbl 

• API2: Coal futures contracts indexed to API 

2, in €/t 

• TTF: TTF natural gas futures contracts, in 

€/MWh 

• EEX_FR: EEX French electricity futures 

contracts, in €/MWh 

• EEX_DE: EEX German electricity futures 

contracts, in €/MWh 

• OMIP: OMIP Spanish electricity futures 

contracts, in €/MWh 

The period covered will be from 28/11/2011 to 25/09/2021, 

and all data refers to baseload values when applicable. The 

data also refers to daily closing prices, and afterwards a 

weekly average was made, as it is common in the literature, in 

order to avoid an excess of data points in our time series. 

1. Impact of oil prices on Year-ahead futures 

contracts: 

There is strong statistical evidence that all series are integrated 

of order 1, (𝐼(1)), except OMIP. When taking the usually 

applied 5% level of statistical significance, for OMIP, in the 

ADF test, we reject the null hypothesis that the series is 𝐼(1), 

while in the PP test, there is statistical evidence of the series 

being 𝐼(𝑂). 

 Despite the inconsistency in the test outcomes for 

OMIP, we assume all the series to have the same order of 

integration, 𝐼(1), and we utilise a VECM, instead of a VAR in 

first-differences, to estimate the impulse response function. 

We can only do this, of course, after checking and concluding 

for the existence of cointegration between the series. 

For the estimation of the VAR and the VECM, the respective 

optimal lag orders were chosen based on the Akaike, Hannan 

and Quinn and Schwarz criteria. VAR models were estimated 

up to the 26th lag and based of the mentioned criteria, a 

VAR(6) is the one that minimizes the selection criteria, 

notably Akaike. 

After, the Trace test (rank test) was run, indicating that there 

is, at least, one vector of cointegration between the time series, 

i.e., there is strong statistical evidence in favour of 

cointegration between the series. This means that the prices of 

Brent, natural gas, electricity and coal, despite shocks in the 

markets, always converge to a mean difference in the long run 

that is somewhat constant. 

In addition, the OLS CUSUM tests were performed to check 

the existence of any break in the time series so that this 

information could be included in the VECM as a deterministic 

component. Moreover, the identification of a break in the 

series is very relevant as, if not controlled for, this could 

compromise the unit root tests, i.e., lead to erroneous 

conclusions. 

IRF shows that, overall, a one standard deviation positive 

change in the price of Brent leads to a positive change 

(response) in the prices of the other energy types in the 

immediate periods. 

After observing the high volatility of the time series, as per the 

ACF of the squared residuals of the VECM, we concluded 

there are indicia of a correlation through time between the 

series. Therefore, we used a DCC-MGARCH model to 

estimate the conditional variance of the series and the dynamic 

correlations with Brent along time. To do so, we made use of 

the series returns, i.e., of the first differences of their natural 

logarithm. 

From the standard-deviations graphs  we can see that there was 

an increase in the variance of oil prices in 2016 and even 

stronger increase in 2020, most likely due to the Covid-19 

pandemic crises. Also, the prices of coal and French and 

German electricity showed big volatility at the end of 2016, 

and Iberian electricity prices have been oscillating a lot and 

show a growing trend from early 2020 onwards. Finally, 

natural gas prices show a continuous trend in terms of increase 

in volatility along the analysed period. 

Time-varying correlations estimated with the DCC(1,1) show 

a positive correlation with the price of Brent. Natural gas 

shows the strongest correlation through time, followed by 

coal, German electricity, French electricity and, lastly, Iberian 

electricity. This seems to follow our initial intuition that 

natural gas prices where the most affected by oil prices, while 

electricity prices only suffer indirect impacts.  
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It also follows out intuition that since Germany has the biggest 

percentage of power derived from fossil fuels, from the 

countries studied, that its electricity prices would be the most 

affected by variations in oil prices. 

Iberian electricity prices present the greatest volatility in its 

correlation with Brent prices during the period under analysis. 

An explanation for this could be the high seasonality of the 

Portuguese and Spanish energy mix that we referred before. 

2. Impact of oil prices on Month-ahead futures 

contracts 

Like in the previous study, relating to Year-ahead futures 

contracts, we observe statistical evidence that all series are 

integrated of order 1, (𝐼(1)). We assume all the series to have 

the same order of integration, 𝐼(1), and we utilise a VECM, 

instead of a VAR in first-differences, to estimate the impulse 

response function. 

Like before, the VAR models were estimated up to the 26th 

lag and based of the Akaike, Hannan and Quinn, and Schwarz 

criteria. Here a VAR(5) is the one that minimizes the selection 

criteria (again we give priority to the Akaike criteria), as can 

be seen in the table below. 

Like in the previous case, the Trace test (rank test) was run, 

indicating that there is, at least, one vector of cointegration 

between the time series. This means that the prices of these 

commodities, despite shocks in the markets, always converge 

to a mean difference in the long run that is somewhat constant. 

OLS CUSUM tests were also performed to check the 

existence of any break in the time series so that this 

information could be included in the VECM as a deterministic 

component.  

The results show, overall, a one standard deviation positive 

change in the price of Brent leads to a positive change 

(response) in the prices of the other energy types in the 

immediate periods, like it was the case in the previous section.  

However, it is interesting to notice that while IRF values for 

natural gas remain similar, coal month-ahead contracts show 

much higher values when comparing to year-ahead contracts. 

We also notice a bigger response on French and German 

power, possibly because an increase in coal prices leads to an 

increase in German electricity prices, and by contagium, 

French electricity prices.  

Time-varying correlations estimated with the DCC(1,1) 

MGARCH show that, overall, all series show a positive 

correlation with the price of crude oil. One interesting 

conclusion is that the impact of oil on coal seems to be bigger 

for month-ahead contracts, while we observe the opposite for 

natural gas and electricity. 

This high value for the time-varying correlation between crude 

oil and coal is coherent with the results that we already 

observed on the study of IRFs. 

We also see that most time-varying correlations are relatively 

stable across time, but this value became very low for the 

relationship between oil and French electricity around 2014, 

but has since been slowly rising. 

 

Conclusion and future work 

Our results prove the intuition that crude oil prices do indeed 

have an impact on the prices of electricity, natural gas, and 

coal. While most of the literature has been focused on the 

relationship between oil prices and natural gas prices, our 

results show that today a stronger relationship is that between 

oil prices and coal prices.  

Given that our study covers most of the last decade, it also has 

shed light on the question of “have oil prices and natural gas 

prices decoupled?”. While it is possible that a stronger 

relationship existed in the past, our results show that oil prices 

still have an impact on natural gas prices, and that this impact 

has remained more or less stable over the past ten years. 

Finally, our work showed some light on the electricity markets 

in Iberia, an area that we thought hadn’t been explored enough 

in the literature. An interesting result is that Iberian electricity 

prices seem to be less affected by oil prices than the French 

and German cases. 

Our work focused on studying the impact of Brent spot prices 

on the futures contracts of the other commodities. Further 

work to be done, includes testing the impact of crude oil 

futures on other futures, as well as studying the impact of both 

Brent spot prices and Brent futures on the spot prices of the 

other commodities. 

While our results show a relation between oil prices and the 

other commodities, we could still explore further these 

relationships by using this very same model to test for the 

impact of natural gas prices or the impact of coal prices on the 

other commodities. 

Furthermore, we could expand our analysis for other 

geographies and markets.  

And finally, we had to limit our number of variables to use in 

the DCC-MGARCH model, as with more variables this model 

would become to heavy to use. So, some interesting future 
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work would be to test the impact of oil prices on each of the 

other commodities, one by one, and each accompanied by 

other variables that could have an extra influence, such as 

extreme weather events, exchange rates of major currencies, 

among others. 
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